鼠單抗SingleB?快速發現服務
從免疫到100株單抗 29天
融合標簽 | 大?。↘D) | 功能 | 是否切除 |
HIS | 0.84 | 有利純化,能純化可溶性/包涵體蛋白 | 標簽小,對蛋白無影響 |
GST | 26 | 增強蛋白可溶性,僅能純化可溶性蛋白,屏蔽毒性蛋白 | 標簽較大,影響較大 |
MBP | 44.4 | 增強蛋白可溶性,屏蔽毒性蛋白 | |
NusA | 55 | 增強蛋白可溶性,屏蔽毒性蛋白 | |
SUMO | 11.2 | 增強可溶性,屏蔽毒性蛋白 |
表1:各個標簽性能對比表
HIS-Tag蛋白純化的首選標簽
HIS-Tag由6-10個組氨酸殘基組成,分子量不到0.84KD,,通常插入在目的蛋白的C末端或N末端。HIS-Tag是目前原核表達最常用的標簽,蛋白純化完之后可以不需切除此標簽,也不會對蛋白產生功能影響。同時,蛋白純化步驟簡便,純化條件溫和,對蛋白也不會產生太大影響。
GST-Tag相對分子質量較大,約為26KD,插入在目的蛋白的C末端或N末端,大腸桿菌中常用在N端。GST(谷胱甘肽巰基轉移酶) 蛋白本身是一個在解毒過程中起到重要作用的轉移酶。一般選擇GST標簽的目的有兩個,一是提高蛋白表達的可溶性,二是提高蛋白的表達量。蛋白表達純化結束后需根據不同的蛋白應用而確定是否切除標簽,標簽較大,切除與否需根據下游應用考慮。如果要去除GST融合部分,可用位點特異性蛋白酶切除。檢測方法可用GST抗體或表達的目的蛋白特異性抗體檢測。
GST的序列:
GST 親和層析是利用GST 融合蛋白與固定的谷胱甘肽(GSH)通過硫鍵共價親和,通過GSH交換洗脫的原理來進行純化 。該純化柱中,凝膠手臂上通過硫鍵結合一個谷胱甘肽。然后利用谷胱甘肽與谷胱甘肽巰基轉移酶(即GST-tag(26 KDa))之間酶和底物的特異性作用力,使得帶GST標簽的融合蛋白能夠與凝膠上的手臂谷胱甘肽結合,從而將帶標簽的蛋白與其他蛋白分離開。谷胱甘肽通常有氧化型GSSG和還原型GSH,當我們使用GSH洗脫時,GSH會與凝膠上的谷胱甘肽競爭結合融合蛋白,從而將目標蛋白洗脫。
GST標簽蛋白可直接從細菌裂解液中利用含有還原型谷胱甘肽瓊脂糖凝膠(Glutathione?sepharose)親和樹脂進行純化。GST標簽蛋白可在溫和、非變性條件下洗脫,因此保留了蛋白的抗原性和生物活性。GST在變性條件下會失去對谷胱甘肽樹脂的結合能力,因此不能在純化緩沖液中加入強變性劑如:鹽酸胍或尿素等。如果蛋白表達在包涵體中,可復性后再純化。此外要去除GST標簽,可用位點特異性蛋白酶切除。
GST蛋白純化流程圖:
MBP(麥芽糖結合蛋白maltose binding protein), 殘基數346,分子量42.5KDa,由大腸桿菌K12的malE基因編碼,構建時刻放在N端,用來提高可溶性(尤其是真核蛋白)。MBP的折疊需要DnaK-DnaJ-GrpE和
GroEL-GeoES兩個分子伴侶系統的幫助,這可以使這些分子伴侶聚集到目的蛋白的附近幫助其正確折疊。另外,以標簽蛋白形式存在的麥芽糖結合蛋白可以減少目的蛋白的降解,提高表達產物的水溶性,也為以后對目的蛋白的純化提供了基礎。麥芽糖結合蛋白能夠被多糖樹脂吸附,因此在過柱時,能夠使融合蛋白與其它蛋白成份分離。
MBP氨基酸序列:
NusA是大腸桿菌自身的一種蛋白,即轉錄抗終止因子,殘基數,495,分子量:54.87KDa,由1999年Davia將NusA從4000種大腸桿菌蛋白庫中篩得。NusA不具有獨立的純化標簽功能,所以要與其它標簽(如His標簽)聯用。利用原核表達時,NusA標簽可以明顯的提高蛋白的可溶性,例如含有NusA標簽的人白介素-3 融合蛋白(NusA/hIL-3 )在37℃條件下誘導表達幾乎全部可溶(97%),而當其單獨表達或融合GST標簽表達時都是包涵體形式。另外NusA標簽還可以提高不溶性靶蛋白如牛生長激素(bGH)、人干擾素-γ (hIFN-γ)的可溶性。來自草木犀根瘤菌(Rizobiummeliloti)的酪氨酸激酶因為分子量大(超過54kDa)并且基因含有大量稀有密碼子,自身在大腸桿菌中無法過量表達,但是與NusA融合后卻可以高效表達。
NusA氨基酸序列:
SUMO標簽蛋白是一種小分子泛素相關修飾蛋白,是存在于真核生物中高度保守的參與蛋白質小泛素化相關修飾的一類大蛋白。與GST、MBP或NusA相比,SUMO不僅可以作為重組蛋白表達的融合標簽還具備分子伴侶的功能,能促進蛋白的正確折疊,對熱和蛋白酶具有耐受性,更有助于保持目的蛋白的穩定性。此外,SUMO標簽有著與其配套的蛋白酶(專一性強),此蛋白酶識別的是SUMO的三級結構,切割的特異性極高,不存在任何氨基酸的殘留,因此適用于重組蛋白表達。